Low-Energy Ions from Laser-Cooled Atoms
Year: 2016
Authors: Shayeganrad G., Fioretti A., Guerri I., Tantussi F., Ciampini D., Allegrini M., Viteau M., Fuso F.
Autors Affiliation: Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy; CNR, INO, I-56124 Pisa, Italy; CNISM, Consorzio Nazl Interuniv Sci Fis Mat, Sez Pisa, I-56127 Pisa, Italy; TESCAN Orsay, Orsay Phys, F-13710 Fuveau, France; Tech Univ Dortmund, Fak Phys, D-44227 Dortmund, Germany; IIT, I-16136 Genoa, Italy.
Abstract: We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Delta U-rms/U similar or equal to 0.032, as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.
Journal/Review: PHYSICAL REVIEW APPLIED
Volume: 5 (5) Pages from: 054020-1 to: 054020-12
More Information: G. S., A. F., I. G., D. C., M. V., and F. F. gratefully acknowledge the support of the European Union Seventh Framework Program under Grant No. 251391 MC-IAPP “COLDBEAMS.” The authors are deeply indebted to Daniel Comparat and Ennio Arimondo for extremely fruitful discussions and suggestions and to Nicola Puccini and Enrico Andreoni for their invaluable technical assistance in the experiment.KeyWords: Retarding potential analyzers; Magnetooptical trap; Depth resolution; Beams; Mass-SpectrometryDOI: 10.1103/PhysRevApplied.5.054020ImpactFactor: 4.808Citations: 5data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-06References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here