Robust luminescence of the silicon-vacancy center in diamond at high temperatures
Year: 2015
Authors: Lagomarsino S., Gorelli F., Santoro M., Fabbri N., Hajeb A., Sciortino S., Palla L., Czelusniak C., Massi M., Taccetti F., Giuntini L., Gelli N., Fedyanin D. Y., Cataliotti F. S., Toninelli C., Agio M.
Autors Affiliation: Univ Florence, Dept Phys & Astrophys, I-50019 Sesto Fiorentino, Italy; Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy; CNR, INO, I-50019 Sesto Fiorentino, Italy; LENS, I-50019 Sesto Fiorentino, Italy; Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy; Univ Pisa, Dept Phys, I-56127 Pisa, Italy; Moscow Inst Phys & Technol, Lab Nanoopt & Plasmon, Dolgoprudnyi 141700, Russia; Ctr Quantum Sci & Technol Arcetri QSTAR, I-50125 Florence, Italy; Univ Siegen, Lab Nanoopt, D-57072 Siegen, Germany.
Abstract: We performed high-temperature luminescence studies of silicon-vacancy color centers obtained by ion implantation in single crystal diamond. We observed reduction of the integrated fluorescence upon increasing temperature, ascribable to a transition channel with an activation energy of 180 meV that populates a shelving state. Nonetheless, the signal decreased only 50% and 75% with respect to room temperature at 500 K and 700 K, respectively. In addition, the color center is found highly photostable at temperatures exceeding 800 K. The luminescence of this color center is thus extremely robust even at large temperatures and it holds promise for novel diamond-based light-emitting devices.
Journal/Review: AIP ADVANCES
Volume: 5 (12) Pages from: 127117-1 to: 127117-6
More Information: The authors would like to thank K. De Hanstetters, S. Orlanducci and Ch. Degen for helpful conversations and for providing diamond samples, L. Ulivi for the use of the annealing chamber.KeyWords: Activation energy; Color; Color centers; Diamonds; Ion implantation; Light emission; Luminescence; Single crystals, High temperature; Increasing temperatures; Light emitting devices; Luminescence studies; Photostable; Silicon vacancies; Single crystal diamond; Silicon wafersDOI: 10.1063/1.4938256ImpactFactor: 1.444Citations: 28data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-13References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here