A trapped single ion inside a Bose-Einstein condensate

Year: 2010

Authors: Zipkes C., Palzer S., Sias C., Köhl M.

Autors Affiliation: Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK

Abstract: Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms(1), and coherent light-matter interfaces have been built(2,3). Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms(4) and to search for variations of fundamental constants in precision atomic clocks(5). Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose-Einstein condensate of neutral atoms. We demonstrate independent control over the two components of the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers(6). We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment(7,8).

Journal/Review: NATURE

Volume: 464 (7287)      Pages from: 388  to: 391

More Information: We are grateful to N. Cooper, C. Kollath, D. Lucas, D. Moehring, E. Peik and C. Wunderlich for discussions. We acknowledge support from the Engineering and Physical Sciences Research Council, the European Research Council (grant number 240335) and the Herchel Smith Fund (C.S.).
DOI: 10.1038/nature08865

ImpactFactor: 36.104
Citations: 321
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-06
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here