Role of excited electronic states in the high-pressure amorphization of benzene
Year: 2008
Authors: Citroni M., Bini R., Foggi P., Schettino V.
Autors Affiliation: LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Florence, Italy;
Dipartimento di Chimica dell’Universita` di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy
Dipartimento di Chimica, Universita` di Perugia, Via Elce di sotto 8, I-06123 Perugia, Italy
Abstract: High-pressure methods are increasingly used to produce new dense materials with unusual properties. Increasing efforts to understand the reaction mechanisms at the microscopic level, to set up and optimize synthetic approaches, are currently directed at carbon-based solids. A fundamental, but still unsolved, question concerns how the electronic excited states are involved in the high-pressure reactivity of molecular systems. Technical difficulties in such experiments include small sample dimensions and possible damage to the sample as a result of the absorption of intense laser fields. These experimental challenges make the direct characterization of the electronic properties as a function of pressure by linear and nonlinear optical spectroscopies up to several GPa a hard task. We report here the measurement of two-photon excitation spectra in a molecular crystal under pressure, up to 12 GPa in benzene, the archetypal aromatic system. Comparison between the pressure shift of the exciton line and the monomer fluorescence provides evidence for different compressibilities of the ground and first excited states. The formation of structural excimers occurs with increasing pressure involving molecules on equivalent crystal sites that are favorably arranged in a parallel configuration. These species represent the nucleation sites for the transformation of benzene into amorphous hydrogenated carbon. The present results provide a unified picture of the chemical reactivity of benzene at high pressure.
Journal/Review: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Volume: 105 (22) Pages from: 7658 to: 7663
KeyWords: Benzene crystal; Electronic transitions; High-pressure chemistry; Two-photon spectroscopyDOI: 10.1073/pnas.0802269105ImpactFactor: 9.380Citations: 58data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-06References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here