Scientific Results

Radiation friction modeling in superintense laser-plasma interactions

Year: 2011

Authors: Macchi A., Tamburini M., Pegoraro F., Lyseikina T.V.

Autors Affiliation: Istituto Nazionale di Ottica, CNR, research unit “Adriano Gozzini”, Pisa, Italy;
Dipartimento di Fisica “Enrico Fermi”, Universit√† di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy;
Institut fuer Physik, Universitaet Rostock, D-18051 Rostock, Germany

Abstract: Radiation Friction or Reaction (RR) effects are important for highly relativistic electrons in superintense electromagnetic fields and are thus expected to play a crucial role in next-term experiments. It is therefore important to include RR in particle-in-cell (PIC) simulations of laser-plasma by an appropriate modeling, keeping the essential RR effects into account while retaining at the same time the capability to perform large-scale simulations. We describe a suitable approach, based on the Landau-Lifshitz equation, which allows the insertion of RR in PIC codes in a modular way and with a very reduced computational cost. Properties of the kinetic equation with RR which is effectively solved by the PIC method are also discussed. We then present the results of multi-dimensional PIC simulations, mainly on radiation pressure acceleration of thin foil targets, addressing the importance of RR effects and showing the strong role played by the laser pulse polarization.

Journal/Review: PROCEEDINGS OF SPIE

Volume: 8075      Pages from: 807509  to: 807509

KeyWords: Laser-Plasma Interactions; Radiation Pressure; Radiation Reaction; Ion Acceleration;
DOI: 10.1117/12.889127

Connecting to view paper tab on IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more