Scientific Results

Endothermic freezing on heating and exothermic melting on cooling

Year: 2005

Authors: Tombari E., Ferrari C., Salvetti G., Johari G.P.

Autors Affiliation: Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; Department of Materials Science and Engineering, McMaster University, Hamilton, Ont. L8S 4L7, Canada

Abstract: Generally, a liquid freezes exothermally on cooling and a crystal melts endothermally on heating. Here we report an opposite occurrence-a liquid\’s endothermic freezing on heating and the resulting crystal\’s exothermic melting on cooling at ambient pressures. C-p decreases on freezing and increases on melting, and the equilibrium temperature meets the thermodynamic requirement. Melting on cooling takes longer than freezing on heating. A rapidly cooled crystal state becomes kinetically frozen, evocative of a nonergodic state. Both C-p and enthalpy relax like those of glasses, though the viscosity is only a few centipoise. The crystal state belongs to energy minima higher than those of the melt, which has consequences for the use of potential-energy landscape, or inherent structures, for a thermodynamic description of a material.


Volume: 123 (5)      Pages from: 051104-1  to: 051104-4

DOI: 10.1063/1.2000228

Citations: 26
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more