Scientific Results

Crater drilling enhancement obtained in parallel non-collinear double-pulse laser ablation

Year: 2010

Authors: Cristoforetti G., Legnaioli S., Palleschi V., Tognoni E., Benedetti P.A.

Autors Affiliation: Applied Laser Spectroscopy Laboratory, Institute for Chemical-Physical Processes, Research Area of National Research Council, Via G. Moruzzi, 1, 56124 Pisa, Italy

Abstract: In order to investigate the double-pulse ablation mechanism, two parallel but non-collinear laser beams, delayed with respect to each other by 1 mu s, were focussed on an aluminium sample, so that a lateral distance of 600 microns exists between the centres of the two craters and no superposition of the laser-ablation zones is present. The use of such configuration results in a signal and in a plasma mass enhancement with respect to the single-pulse case almost equal to that obtained in the double-pulse collinear case. However, such a non-collinear geometry evidences a much more effective drilling of the surface. Such unexpected drilling seems to be related to a hydrodynamic drainage out of aerosol and molten material, hindering its re-deposition in and around the crater.

Journal/Review: APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING (PRINT)

Volume: 98 (1)      Pages from: 219  to: 225

KeyWords: Laser Ablation; Double Pulse;
DOI: 10.1007/s00339-009-5379-8

Citations: 13
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more