Dynamics of the creation of a rotating bose-einstein condensation by two photon raman transition using a laguerre-gaussian laser pulse

Year: 2021

Authors: Mukherjee K.; Bandyopadhyay S.; Angom D.; Martin A.M.; Majumder S.

Autors Affiliation: Indian Inst Technol Kharagpur, Kharagpur 721302, W Bengal, India; Phys Res Lab, Ahmadabad 380009, Gujarat, India; Indian Inst Technol Gandhinagar, Gandhinagar 382355, Gujarat, India; Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia; Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Trento, Italy; Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy

Abstract: We present numerical simulations to unravel the dynamics associated with the creation of a vortex in a Bose-Einstein condensate (BEC), from another nonrotating BEC using two-photon Raman transition with Gaussian (G) and Laguerre-Gaussian (LG) laser pulses. In particular, we consider BEC of Rb atoms at their hyperfine ground states confined in a quasi two dimensional harmonic trap. Optical dipole potentials created by G and LG laser pulses modify the harmonic trap in such a way that density patterns of the condensates during the Raman transition process depend on the sign of the generated vortex. We investigate the role played by the Raman coupling parameter manifested through dimensionless peak Rabi frequency and intercomponent interaction on the dynamics during the population transfer process and on the final population of the rotating condensate. During the Raman transition process, the two BECs tend to have larger overlap with each other for stronger intercomponent interaction strength.

Journal/Review: ATOMS

Volume: 9 (1)      Pages from: 14-1  to: 14-19

KeyWords: Bose-Einstein condensate; Laguerre-Gaussian; Raman transition; cold atoms; light-matter interaction; particle transfer; density pattern
DOI: 10.3390/atoms9010014