Analog cosmological reheating in an ultracold Bose gas

Year: 2021

Authors: Chatrchyan Aleksandr; Geier Kevin T.; Oberthaler Markus K.; Berges Juergen; Hauke Philipp

Autors Affiliation: Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany; Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Povo, TN, Italy; Univ Trento, Dept Phys, Via Sommar 14, I-38123 Povo, TN, Italy; Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany.

Abstract: Cosmological reheating describes the transition of the postinflationary universe to a hot and thermal state. In order to shed light on the underlying dynamics of this process, we propose to quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas. In our setup, the excitations on top of an atomic Bose-Einstein condensate play the role of the particles produced by the decaying inflaton field after inflation. Expanding spacetime as well as the background oscillating inflaton field are mimicked in the nonrelativistic limit by a time dependence of the atomic interactions, which can be tuned experimentally via Feshbach resonances. As we illustrate by means of classical-statistical simulations for the case of two spatial dimensions, the dynamics of the atomic system exhibits the characteristic stages of far-from-equilibrium reheating, including the amplification of fluctuations via parametric instabilities and the subsequent turbulent transport of energy towards higher momenta. The transport is governed by a nonthermal fixed point showing universal self-similar time evolution as well as a transient regime of prescaling with time-dependent scaling exponents. While the classical-statistical simulations can capture only the earlier stages of the dynamics for weak couplings, the proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.

Journal/Review: PHYSICAL REVIEW A

Volume: 104 (2)      Pages from: 023302-1  to: 023302-27

KeyWords: inflationary universe; dynamics
DOI: 10.1103/PhysRevA.104.023302

ImpactFactor: 2.971
Citations: 14
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-10
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here