Petawatt and exawatt class lasers worldwide

Year: 2019

Authors: Danson Colin N.; Haefner Constantin; Bromage Jake; Butcher Thomas; Chanteloup Jean Christophe F.; Chowdhury Enam A.; Galvanauskas Almantas; Gizzi Leonida A.; Hein Joachim; Hillier David I.; Hopps Nicholas W.; Kato Yoshiaki; Khazanov Efim A.; Kodama Ryosuke; Korn Georg; Li Ruxin; Li Yutong; Limpert Jens; Ma Jingui; Nam Chang Hee; Neely David; Papadopoulos Dimitrios; Penman Rory R.; Qian Liejia; Rocca Jorge J.; Shaykin Andrey A.; Siders Craig W.; Spindloe Christopher; Szatmbri Sbndor; Trines Raoul M.G.M.; Zhu Jianqiang; Zhu Ping; Zuegel Jonathan D.

Autors Affiliation: AWE, Reading, Berks, England; Univ Oxford, Dept Phys, Clarendon Lab, OxCHEDS, Oxford, England; Imperial Coll, Blackett Lab, CIFS, London, England; Lawrence Livermore Natl Lab, NIF & Photon Sci Directorate, Livermore, CA USA; Fraunhofer Inst Laser Technol ILT, Aachen, Germany; Rhein Westfal TH Aachen, Chair Laser Technol LLT, Aachen, Germany; Univ Rochester, Lab Laser Energet, Rochester, NY 14627 USA; STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot, Oxon, England; Sorbonne Univ, Inst Polytech Paris, Ecole Polytech, LULI,CNRS CEA, Palaiseau, France; Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA; Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA; CNR, Intense Laser Irradiat Lab, INO, Pisa, Italy; Friedrich Schiller Univ Jena, Inst Opt & Quantum Elect, Jena, Germany; Helmholtz Inst, Jena, Germany; G rad Sch Creat New Photon Ind, Nishi Ku, Hamamatsu, Shizuoka, Japan; Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia; Osaka Univ, Inst Laser Engn, Suita, Osaka, Japan; Czech Acad Sci, Inst Phys, ELI Beamfines, Prague, Czech Republic; Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China; Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China; Friedrich Schiller Univ Jena, Inst Appl Phys, Jena, Germany; Helmholtz Inst Jena, Jena, Germany; Fraunhofer Inst Appl Opt & Precis Engn IOF, Jena, Germany; Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Laser Plasma, Minist Educ, Shanghai 200240, Peoples R China; Gwangju Inst Sci & Technol, Inst Basic Sci, Dept Phys & Photon Sci, Ctr Relativist Laser Sci CoReLS, Gwangju, South Korea; Univ Strathclyde, Dept Phys, SUPA, Glasgow, Lanark, Scotland; Colorado State Univ, Ft Collins, CO 80523 USA; Univ Szeged, Dept Expt Phys, Szeged, Hungary; Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China.

Abstract: In the 2015 review paper ‘Petawatt Class Lasers Worldwide’ a comprehensive overview of the current status of high-power facilities of >200 TW was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multi-disciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.

Journal/Review: HIGH POWER LASER SCIENCE AND ENGINEERING

Volume: 7      Pages from: e54-1  to: e54-54

KeyWords: exawatt lasers; high-power lasers; petawatt lasers; ultra-high intensity
DOI: 10.1017/hpl.2019.36

ImpactFactor: 2.606
Citations: 633
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-01
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here