Spatiotemporal optical dark X solitary waves

Anno: 2016

Autori: Baronio F., Chen S., Onorato M., Trillo S., Wabnitz S., Kodama Y.

Affiliazione autori: Univ Brescia, INO CNR, Via Branze 38, I-25123 Brescia, Italy; Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy; Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China; Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy; Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy; Univ Ferrara, Dipartimento Ingn, Via Saragat 1, I-44122 Ferrara, Italy; Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA.

Abstract: We introduce spatiotemporal optical dark X solitary waves of the (2 + 1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.

Giornale/Rivista: OPTICS LETTERS

Volume: 41 (23)      Da Pagina: 5571  A: 5574

Maggiori informazioni: Italian Ministry of University and Research (MIUR) (2012BFNWZ2); National Natural Science Foundation of China (NSFC) (11174050, 11474051); National Science Foundation (NSF) (1410267).
Parole chiavi: Nonlinear equations; Solitons; Wave propagation, Continuous Wave; Dinger equation; Modulation instabilities; Normally dispersive medium; Self-focusing; Shallow waters; Soli-tary wave solutions; Soliton solutions, Nonlinear optics
DOI: 10.1364/OL.41.005571

Citazioni: 27
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-09-08
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui