Catching homologies by geometric entropy
Anno: 2018
Autori: Felice D., Franzosi R., Mancini S., Pettini M.
Affiliazione autori: Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy; INFN Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy; QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; CNR, INO, Largo Enrico Fermi 2, I-50125 Florence, Italy; Aix Marseille Univ, Marseille, France; CNRS, Ctr Phys Theor, UMR7332, F-13288 Marseille, France.
Abstract: A geometric entropy is defined in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale-free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies. (C) 2017 Elsevier B.V. All rights reserved.
Giornale/Rivista: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Volume: 491 Da Pagina: 666 A: 677
Parole chiavi: Entropy; Geometry; Large scale systems; Numerical methods; Topology, Analytical method; Bottom-up manner; Differential geometry; Geometric entropy; Large-size networks; Numerical techniques; Statistical manifolds; Topological features, Complex networksDOI: 10.1016/j.physa.2017.09.007Citazioni: 1dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-09-08Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui