Repeller structure in a hierarchical model. 1. Topological properties
Anno: 1991
Autori: Livi R., Politi A., Ruffo S.
Affiliazione autori: Dipartimento di Fisica, Università di Firenze, 50125 Firenze, Italy;
Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy;
Dipartimento di Chimica, Università della Basilicata, Potenza, Italy;
Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, Italy
Abstract: The repeller associated with the renormalization dynamics of the spectral problem of a hierarchical tight-binding Schrodinger equation is studied. Analysis of escaping regions and of stable and unstable manifolds provide complementary descriptions of the recurrent set, whose structure undergoes relevant changes when the growth rate R of the potential barriers is modified. The minimal region containing the repeller is determined and the mechanism originating a Cantor set structure along the unstable manifold is revealed. The repeller is continuous along the stable manifold for R < 2. Finally, we show the existence of a pointlike component of the spectrum located at its upper extremum for R < 1 and we present the associated wavefunctions. Giornale/Rivista: JOURNAL OF STATISTICAL PHYSICS
Volume: 65 (1-2) Da Pagina: 53 A: 72
Parole chiavi: STRANGE REPELLERS; LOCALIZATION; SCHRODINGER OPERATOR; HIERARCHICAL STRUCTURES; RENORMALIZATION GROUPDOI: 10.1007/BF01329850Citazioni: 5dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui