Dynamic localization of Lyapunov vectors in spacetime chaos
Anno: 1998
Autori: Pikovsky A., Politi A.
Affiliazione autori: Department of Physics, University of Potsdam, Am Neuen Palais PF 601553, 14415 Potsdam, Germany;
Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy
Abstract: We study the dynamics of Lyapunov vectors in various models of one-dimensional distributed systems with spacetime chaos. We demonstrate that the vector corresponding to the maximum exponent is always localized and the localization region wanders irregularly. This localization is explained by interpreting the logarithm of the Lyapunov vector as a roughening interface. We show that for many systems, the ’interface’ belongs to the Kardar-Parisi-Zhang universality class. Accordingly, we discuss the scaling behaviour of finite-size effects and self-averaging properties of the Lyapunov exponents.
Giornale/Rivista: NONLINEARITY
Volume: 11 (4) Da Pagina: 1049 A: 1062
Parole chiavi: Spatiotemporal Chaos; Arnold Diffusion; Information-flow; Interfaces; Systems; Intermittency; Fluctuations; MapsDOI: 10.1088/0951-7715/11/4/016Citazioni: 75dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui