Madelung fluid description of the generalized derivative nonlinear Schrodinger equation: special solutions and their stability
Anno: 2009
Autori: Visinescu A., Grecu D., Fedele R., De Nicola S.
Affiliazione autori: Department of Theoretical Physics, National Institute for Physics and Nuclear Engineering “Horia Hulubei,” Bucharest, Romania;
University “Federico II,” Naples, Italy;
Institute of Cybernetics “Eduardo Caianello,” Pozzuoli, Naples, Italy
Abstract: A correspondence between the families of generalized nonlinear Schrodinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov-Kolokolov criterion is applicable.
Giornale/Rivista: THEORETICAL AND MATHEMATICAL PHYSICS
Volume: 160 (1) Da Pagina: 1066 A: 1074
Parole chiavi: generalized nonlinear Schr¨odinger equat; Madelung fluid description; Korteweg–de Vries equation,DOI: 10.1007/s11232-009-0098-zCitazioni: 11dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui