Multilayered Bioorthogonal SERS Nanoprobes Selectively Aggregating in Human Fluids: A Smart Optical Assay for ?-Amyloid Peptide Quantification

Anno: 2023

Autori: Dallari C., Lenci E., Trabocchi A., Bessi V., Bagnoli S., Nacmias B., Credi C., Pavone FS.

Affiliazione autori: European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Phys, I-50019 Sesto Fiorentino, Italy; Natl Res Council CNR, Natl Inst Opt INO, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Chem, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Neurol & Psychiat Sci NeuroFarba, I-50134 Florence, Italy; IRCCS Fdn Don Carlo Gnocchi, I-50143 Florence, Italy.

Abstract: Alzheimer�s disease (AD) is a debilitating neurological condition characterized by cognitive decline, memory loss, and behavioral skill impairment, features that worsen with time. Early diagnosis will likely be the most effective therapy for Alzheimer�s disease since it can ensure timely pharmacological treatments that can reduce the irreversible progression and delay the symptoms. Amyloid beta-peptide 1-42 (A beta (1-42)) is considered one of the key pathological AD biomarkers that is present in different biological fluids. However, A beta (1-42) detection still relies on colorimetric and enzyme-linked immunoassays as the gold standard characterized by low accuracy or high costs, respectively. In this context, optical detection techniques based on surface-enhanced Raman spectroscopy (SERS) through advanced nanoconstructs are promising alternatives for the development of novel rapid and low-cost methods for the targeting of A beta pathological biomarkers in fluids. Here, a multilayered nanoprobe constituted by bioorthogonal Raman reporters (RRs) embedded within two layers of gold nanoparticles (Au@RRs@AuNPs) has been developed and successfully validated for specific detection of A beta (1-42) in the human cerebrospinal fluid (CSF) with sensitivity down to pg/mL. The smart double-layer configuration enables us to exploit the outer gold NP surfaces for selective absorption of targeted peptide whose concentration controls the aggregation behavior of Au@RRs@AuNPs, proportionally reflected in Raman intensity changes, providing high specificity and sensitivity and representing a significant step ahead of the state of the art on SERS for clinical analyses.

Giornale/Rivista: ACS SENSORS

Volume: 8 (10)      Da Pagina: 3693  A: 3700

Maggiori informazioni: This work was supported by DoptoScreen project (Fondo di Beneficenza Intesa San Paolo 2019, B/2019/0289) and RISE project. The authors also wish to acknowledge Fulvio Ratto, Sonia Centi, and Roberto Pini (Institute of Applied Physics �N. Carrara�, CNR-Florence, Italy) for their assistance in the experiments. The authors would like also to t hank the Centre for Electron Microscopies (Ce.ME) and the Centro di competenza-RISE funded by FAS Regione Toscana.
Parole chiavi: multilayered nanoparticles; SERS-based sensors; bioorthogonal Raman; cerebrospinal fluid; A beta(1-42) peptides; neurodegenerative biomarker
DOI: 10.1021/acssensors.3c00225

Citazioni: 12
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-06-08
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui