From Transparent Conducting Material to Gas-Sensing Application of SnO2:Sb Thin Films
Anno: 2018
Autori: Saeedabad S. H., Selopal G. S., Rozati S. M., Tavakoli Y., Sberveglieri G.
Affiliazione autori: Univ Guilan, Dept Phys, Rasht, Iran; Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China; Inst Natl Rech Sci, Ctr Energie Mat & Telecommun, 1650 Boul Lionel Boulet, Varennes, PQ J3X 1S2, Canada; Univ Brescia, Dept Informat Engn, SENSOR Lab, Via Valotti 9, I-25133 Brescia, Italy; CNR INO SENSOR Lab, Via Branze 45, I-25123 Brescia, Italy.
Abstract: Transparent conductive thin films of nanocrystalline tin oxide: antimony (SnO2:Sb) were deposited on a preheated glass substrate at 400 degrees C via spray pyrolysis technique. The effects of Sb doping concentration on morphological, structural and optical properties of the films were investigated by ultraviolet (UV)-visible absorption, x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD study revealed that all the films had a polycrystalline nature, which increased with the Sb doping up to 4 wt.% and then decreased with further Sb doping. Similarly, the SEM images highlighted that the grain size of the SnO2:Sb thin films increased with Sb doping from 2 wt.% to 4 wt.% and then decreased for 6 wt.%. UV-visible study demonstrated that the average transmission in the visible region was found to vary from 35% to 75% depending on the Sb doping concentration. As a proof of concept, we implemented the SnO2:Sb thin films with different Sb doping for gas-sensing applications. To measure the selectivity of the SnO2:Sb thin films, the Sb-doped and -undoped films were exposed to different types of gases with varied concentration. The results of this work demonstrated that the SnO2:Sb thin film-based gas sensor had a high potential for NH3 at a low temperature (100 degrees C). In addition, long-term stability of the SnO2:Sb thin film-based sensor was measured at 100 ppm NH3 for 90 days.
Giornale/Rivista: JOURNAL OF ELECTRONIC MATERIALS
Volume: 47 (9) Da Pagina: 5165 A: 5173
Parole chiavi: Spray pyrolysis; SnO2:Sb thin films; gas sensor; NH3; selectivityDOI: 10.1007/s11664-018-6404-5Citazioni: 18dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui