Collision of Feigenbaum cascades
Anno: 1984
Autori: Oppo G.L., Politi A.
Affiliazione autori: Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy
Abstract: The existence in dynamical systems of chaotic bands delimited on both sides by period-doubling cascades is a general two-parameter phenomenon. Evidence is presented to show that, whenever these chaotic regions disappear, the bifurcation convergence rate undergoes a slowing down and asymptotically approaches the square root of the universal number delta = approximately 4.6692. A simple renormalization-group analysis is performed to explain this critical behavior and its scaling properties. In particular a theoretical universal function describing the evolution of the convergence rate from sq rt delta to delta is given and numerically verified.
Giornale/Rivista: PHYSICAL REVIEW A
Volume: 30 (1) Da Pagina: 435 A: 441
Parole chiavi: nonlinear systems; stocastic processes; DOI: 10.1103/PhysRevA.30.435Citazioni: 26dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui