Attosecond-Level Delay Sensing via Temporal Quantum Erasing

Anno: 2023

Autori: Sgobba F., Andrisani A., Dello Russo S., de Cumis MS., Amato LS.

Affiliazione autori: Italian Space Agcy ASI, Ctr Spaziale Giuseppe Colombo, I-75100 Matera, Italy; CNR, Ist Nazl Ott, Largo E Fermi 6, I-50125 Florence, Italy; CNR, Ist Nazl Ott, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy.

Abstract: Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original HOM with enhanced sensitivity. This setup shows promising applications in biological sensing and optical metrology, where high sensitivity requirements are coupled with the necessity to keep light intensity as low as possible to avoid power-induced degradation. In this paper, we developed a highly sensitive single photon birefringence-induced delay sensor operating in the telecom range (1550 nm). By using a temporal quantum eraser based on common path Hongr-Ou-Mandel Interferometry, we were able to achieve a sensitivity of 4 as for an integration time of 2 center dot 104 s.

Giornale/Rivista: SENSORS

Volume: 23 (18)      Da Pagina: 7758-1  A: 7758-8

Maggiori informazioni: We wish to acknowledge Vincenzo Buompane and Graziano Spinelli for technical support.
Parole chiavi: Hong-Ou-Mandel interferometry; polarization entanglement; quantum eraser
DOI: 10.3390/s23187758

Citazioni: 3
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-18
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui