X-ray emission from laser-produced plasmas
Year: 1998
Authors: Giulietti D., Gizzi L.A.
Autors Affiliation: Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy;
CNR, Ist Fis Atom & Mol, I-56100 Pisa, Italy
Abstract: 1. Introduction
2. Laser-produced plasmas
2″1. Basic concepts
2″2. Semi-analytical modelling of laser plasmas
2″3. Hydrodynamic simulations
2″3.1. Lagrangian coordinates
2″3.2. Modelling long-scalelength laser-plasma experiments
3. Laser-plasma interactions
3″1. Absorption mechanisms
3″1.1. Inverse bremsstrahlung absorption
3″1.2. Ion turbulence absorption
3″1.3. Resonance absorption
3″1.4. Brunel effect
3″2. Parametric instabilities
3’2.1. Stimulated Brillouin scattering (SBS)
3″2.2. Stimulated Raman scattering (SRS)
3″2.3. Two-plasmon decay (TPD)
3″2.4. Filamentation
3″2.5. Surface plasma waves (SPW)
3″2.6. Hot electrons
3’3. Femtosecond interactions
3″3.1. Basic features of femtosecond interactions
3″3.2. Propagation of laser light in overdense plasmas
4. X-ray emission from laser plasmas
4″1. Fundamental emission processes
4″1.1. Bremsstrahlung
4’1.2. Recombination
4″1.3. Lines
4″2. Radiation transport in plasmas
4″2.1. Basic definitions
4″2.2. Limit approximations: thin and thick plasmas
4″3. Equilibria in laser-produced plasmas
4″3.1. Thermal equilibrium (TE)
4″3.2. Local thermal equilibrium (LTE)
4″3.3. Non-LTE plasmas
4″3.4. Coronal equilibrium (CE)
4″3.5. Collisional-radiative equilibrium (CRE)
4″4. Atomic physics: temporal scale and related calculations
4’4.1. Limits of the steady-state approximation
4’4.2. Transient ionisation in A1 plasmas
4’4.3. Transient ionisation in low-Z plasmas
4″5. Characteristics of laser-plasma X-ray sources
4’5.1. Spectral distribution
4″5.2. X-ray pulse duration
4″5.3. Source size and angular distribution
4″5.4. X-ray conversion efficiency
4″6. X-ray emission in ultra-short pulse interactions
4″6.1. Femtosecond X-ray sources
4″6.2. High harmonics generation
4″7. X-ray lasers
4″7.1. Motivation
4″7.2. Basic principles
4″7.3. Pumping schemes
5. X-rays as plasma diagnostics
5″1. X-ray spectroscopy
5″1.1. Spectroscopic techniques
5″1.2. Time-resolved analysis
5″1.3. Temperature measurements from X-ray spectra
5″2. Plasma opacity
5″2.1. Opacity effects in temperature measurements
5″2.2. Laser reheating of preformed plasmas
5″3. Plasma density
5″3.1. Interferometer set up for phase shift measurements
5″3.2. Experimental results
5″3.3. Basic principles of time-resolved interferometry
5″3.4. Electron density profiles
5″4. X-ray imaging of plasmas
5″4.1. Basic X-ray imaging techniques
5″4.2. Spectral selection in X-ray imaging
5″4.3. Time-resolving techniques
5″4.4. An illustrative example of fast X-ray imaging
5″5. Particles and high energy photons
5″5.1. Ions, electrons and alpha-particles
5″5.2. Hard X-rays and ~-rays from super-hot electrons
6. Applications
6″1. X-rays in science, technology and medicine
6″1.1. X-ray microscopy
6″1.2. Advantages of LPP X-ray sources
6″1.3. Progress in the design of LPP X-ray sources
6″1.4. Examples of applications of LPP X-rays
6″2. Main X-ray sources
6″2.1. X-ray tubes
6″2.2. Synchrotron radiation
6″2.3. Comparison of X-ray sources
7. Conclusions
Journal/Review: RIVISTA DEL NUOVO CIMENTO
Volume: 21 (10) Pages from: 1 to: 93
KeyWords: chirped-pulse amplification; order harmonic-generation; extreme UV lithography; femtosecond laser; underdense plasmaDOI: 10.1007/BF02874624Citations: 139data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-08References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here