Phase magnification by two-axis countertwisting for detection-noise robust interferometry

Anno: 2018

Autori: Anders F., Pezzè L., Smerzi A., Klempt C.

Affiliazione autori: Leibniz Univ Hannover, Inst Quantenopt, Welfengarten 1, D-30167 Hannover, Germany; CNR, INO, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy.

Abstract: Entanglement-enhanced atom interferometry has the potential of surpassing the standard quantum limit and eventually reaching the ultimate Heisenberg bound. The experimental progress is, however, hindered by various technical noise sources, including the noise in the detection of the output quantum state. The influence of detection noise can be largely overcome by exploiting echo schemes, where the entanglement-generating interaction is repeated after the interferometer sequence. Here, we propose an echo protocol that uses two-axis countertwisting as the main nonlinear interaction. We demonstrate that the scheme is robust to detection noise and its performance is superior compared to the already demonstrated one-axis twisting echo scheme. In particular, the sensitivity maintains the Heisenberg scaling in the limit of a large particle number. Finally, we show that the protocol can be implemented with spinor Bose-Einstein condensates. Our results thus outline a realistic approach to mitigate the detection noise in quantum-enhanced interferometry.

Giornale/Rivista: PHYSICAL REVIEW A

Volume: 97 (4)      Da Pagina: 43813-1  A: 43813-11

Maggiori informazioni: We thank Monika Schleier-Smith for helpful discussions and Marco Gabbrielli for stimulating remarks and for reading the manuscript. We also thank an anonymous referee for important remarks that triggered further analysis. C.K. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) through CRC 1227 (DQ-mat), Project No. A02. F.A. acknowledges support from the Hannover School for Nanotechnology (HSN) and the ERASMUS+ program.
Parole chiavi: Quantum; Entanglement; States; Limit
DOI: 10.1103/PhysRevA.97.043813

Citazioni: 35
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-09-15
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui