Entanglement detection in a coupled atom-field system via quantum Fisher information
Anno: 2017
Autori: Mirkhalaf SS., Smerzi A.
Affiliazione autori: INO CNR, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy.
Abstract: We consider a system of finite number of particles collectively interacting with a single-mode coherent field inside a cavity. Depending on the strength of the initial field compared to the number of atoms, we consider three regimes of weak-, intermediate-, and strong-field interaction. The dynamics of multiparticle entanglement detected by quantum Fisher information and spin squeezing are studied in each regime. It is seen that in the weak- field regime, spin squeezing and quantum Fisher information coincide. However, by increasing the initial field population toward the strong-field regime, quantum Fisher information is more effective in detecting entanglement compared to spin squeezing. In addition, in the two-atom system, we also study concurrence. In this case, the quantum Fisher information as a function of time is in good agreement with concurrence in predicting entanglement peaks.
Giornale/Rivista: PHYSICAL REVIEW A
Volume: 95 (2) Da Pagina: 22302-1 A: 22302-10
Parole chiavi: Phase-transition; Dicke-model; Radiation-field; Limit; Cavity; States; Generation; LightDOI: 10.1103/PhysRevA.95.022302Citazioni: 13dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-12-01Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui