Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers

Anno: 2013

Autori: Fatome J., El-Mansouri I., Blanchet J.-L., Pitois S., Millot G., Trillo S., Wabnitz S.

Affiliazione autori: Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, Dijon 21078, France; Dipartimento di Ingegneria, Universitá di Ferrara, Via Saragat 1, Ferrara 44122, Italy; Department of Information Engineering, Universitá di Brescia, Brescia 25123, Italy

Abstract: We show that, by properly adjusting the relative state of polarization of the pump and of a weak modulation, with a frequency such that at least one of its even harmonics falls within the band of modulation instability, one obtains a fully modulated wave at the second or higher even harmonic of the initial modulation. An application of this principle to the generation of an 80 GHz optical pulse train with high extinction ratio from a 40 GHz weakly modulated pump is experimentally demonstrated using a nonzero dispersion-shifted fiber in the telecom C band.


Volume: 30 (1)      Da Pagina: 99  A: 106

Maggiori informazioni: This work was carried out with support from the Italian Ministry of University and Research (MIUR) through grant contracts 2008MPSSNX and 2009P3K72Z, from the Conseil Regional de Bourgogne, and from the iXCore Foundation. We also thank Prysmian Group for providing the low-PMD nonzero-dispersion-shifted fiber (NZDSF) used in our experiment.
Parole chiavi: Harmonic analysis; Modulation; Optical fibers; Polarization, C-bands; Even-harmonic; Extinction ratios; Modulated waves; Modulation instabilities; Non-zero dispersion-shifted fibers; Optical pulse train; State of polarization; Telecom, Optical pumping
DOI: 10.1364/JOSAB.30.000099

Citazioni: 15
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-05-19
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui