Vector solitons in nearly one-dimensional Bose-Einstein condensates

Anno: 2006

Autori: Salasnich L., Malomed B.A.

Affiliazione autori: CNISM, I-35131 Padua, Italy;
Univ Padua, CNR, INFM, Dipartimento Fis G Galilei,Unita Padova, I-35131 Padua, Italy;
Tel Aviv Univ, Dept Interdisciplinary Studies, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel

Abstract: We derive a system of nonpolynomial Schrodinger equations for one-dimensional wave functions of two components in a binary self-attractive Bose-Einstein condensate loaded in a cigar-shaped trap. The system is obtained by means of the variational approximation, starting from the coupled three-dimensional (3D) Gross-Pitaevskii equations and assuming, as usual, the factorization of 3D wave functions. The system can be obtained in a tractable form under a natural condition of symmetry between the two species. A family of vector (two-component) soliton solutions is constructed. Collisions between orthogonal solitons (ones belonging to the different components) are investigated by means of simulations. The collisions are essentially inelastic. They result in strong excitation of intrinsic vibrations in the solitons, and create a small orthogonal component (“shadow”) in each colliding soliton. The collision may initiate collapse, which depends on the mass and velocities of the solitons.

Giornale/Rivista: PHYSICAL REVIEW A

Volume: 74 (5)      Da Pagina: 053610-1  A: 053610-6

Parole chiavi: ultracold atoms
DOI: 10.1103/PhysRevA.74.053610

Citazioni: 91
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-05-12
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui