Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3

Anno: 2010

Autori: Ricciardi I., De Rosa M., Rocco A., Ferraro P., De Natale P.

Affiliazione autori: CNR – Istituto Nazionale di Ottica, Sezione di Napoli and LENS, European Laboratory for Nonlinear Spectroscopy,Via Campi Flegrei 34, I-80078 Pozzuoli (NA), Italy

Abstract: We report on efficient cw high-power second harmonic generation in a periodically poled LiTaO3 crystal placed in a resonant enhancement cavity. We tested three configurations, differing in the coupling mirror reflectivity, and a maximum conversion efficiency of about 76%, corresponding to 6.1 W of green light with 8.0 W of fundamental power, was achieved. This is, to the best of our knowledge, the highest cw power ever reported using a periodically-poled crystal in an external cavity. We observed photo-thermal effect induced by photon absorption at the mirrors and in the crystal, which however does not affect stable operation of the cavity. A further effect arises for two out of the three configurations, at higher values of the input power, which degrades the performance of the locked cavity. We suggest this effect is due to the onset of competing nonlinearities in the same crystal. (C) 2010 Optical Society of America

Giornale/Rivista: OPTICS EXPRESS

Volume: 18 (11)      Da Pagina: 10985  A: 10994

Maggiori informazioni: The authors thank Pasquale Poggi for technical assistance. This work was funded by Ministero degli Affari Esteri (Project UVICOLS).
Parole chiavi: Conversion efficiency; Mirrors; Optical frequency conversion, Coupling mirror; External cavity; Green light; High-power; Input power; Non-Linearity; Periodically poled; Periodically-poled crystals; Photo-thermal; Photon absorptions; Resonant enhancements; Second harmonic generation; Second-harmonic power; Stable operation, Harmonic generation, lithium; lithium tantalate oxide; magnesium oxide; oxide; tantalum, article; chemistry; energy transfer; equipment; equipment design; illumination; instrumentation; light; optical instrumentation; radiation exposure, Energy Transfer; Equipment Design; Equipment Failure Analysis; Light; Lighting; Lithium; Magnesium Oxide; Optical Devices; Oxides; Tantalum
DOI: 10.1364/OE.18.010985

Citazioni: 19
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-04-14
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui