Thermodynamic behavior of a one-dimensional Bose gas at low temperature

Anno: 2017

Autori: De Rosi G., Astrakharchik GE., Stringari S.

Affiliazione autori: Univ Trento, INO CNR BEC Ctr, Via Sommarive 14, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Povo, Italy; Univ Politecn Cataluna, Dept Fis, ES-08034 Barcelona, Spain.

Abstract: We show that the chemical potential of a one-dimensional (1D) interacting Bose gas exhibits a nonmonotonic temperature dependence which is peculiar of superfluids. The effect is a direct consequence of the phononic nature of the excitation spectrum at large wavelengths exhibited by 1D Bose gases. For low temperatures T, we demonstrate that the coefficient in T-2 expansion of the chemical potential is entirely defined by the zero-temperature density dependence of the sound velocity. We calculate that coefficient along the crossover between the Bogoliubov weakly interacting gas and the Tonks-Girardeau gas of impenetrable bosons. Analytic expansions are provided in the asymptotic regimes. The theoretical predictions along the crossover are confirmed by comparison with the exactly solvable Yang-Yang model in which the finite-temperature equation of state is obtained numerically by solving Bethe-ansatz equations. A 1D ring geometry is equivalent to imposing periodic boundary conditions and arising finite-size effects are studied in detail. At T = 0 we calculated various thermodynamic functions, including the inelastic structure factor, as a function of the number of atoms, pointing out the occurrence of important deviations from the thermodynamic limit.

Giornale/Rivista: PHYSICAL REVIEW A

Volume: 96 (1)      Da Pagina: 013613-1  A: 013613-13

Parole chiavi: QUANTUM; BOSONS; SYSTEM; ORDER
DOI: 10.1103/PhysRevA.96.013613

Citazioni: 15
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-04-14
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui