Diagnostics and Characterization of Photonic Circuits by Wide-Field Spatiotemporal Imaging

Anno: 2020

Autori: Nuzhdin D., Pattelli L., Nocentini S., Wiersma D.

Affiliazione autori: Univ Florence, European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy; Karlsruhe Inst Technol KIT, Inst Appl Phys, D-76128 Karlsruhe, Germany; Ist Nazl Ric Metrol INRiM, I-10135 Turin, Italy; CNR, Ist Nazl Ott, I-50019 Sesto Fiorentino, Italy

Abstract: The growing diffusion of integrated photonic technologies requires fast and noninvasive quality control techniques for mass production. We present a general diagnostic technique for subps imaging of photonic circuits combining wide-field optical microscopy and optical gating. The simultaneous access to multiple parameters of a photonic structure enables an unprecedented characterization of its functional design as opposed to typical single-domain techniques such as frequency or time domain reflectometry and near-field microscopy. The noncontact and nonperturbative nature of the technique makes it relevant for both planar and three-dimensional circuits, as well as for silicon, polymeric, or hybrid platforms. We apply our technique to different photonic chip components fabricated by Direct Laser Writing, revealing the spatial and temporal hallmarks of fabrication imperfections causing losses or deviations from the intended device behavior. At the same time, the technique allows in situ probing of the key properties of photonic devices as the local propagation constants of guided modes or the quality factor of resonant elements. Our method is relevant for both the scientific and the industrial communities, as it lends itself to be scaled up to in-line quality control thanks to its nonscanning nature.

Giornale/Rivista: ACS PHOTONICS

Volume: 7 (6)      Da Pagina: 1491  A: 1499

Maggiori informazioni: This research was supported by Erasmus Mundus Doctorate Program Europhotonics (Grant No. 159224-1-2009-1-FR-ERA MUNDUS-EMJD) and ERC Advanced Grant No. 291349.
Parole chiavi: fabrication error; optical gating; wide field imaging; lithographic quality control; integrated photonic circuits; functional diagnostics
DOI: 10.1021/acsphotonics.0c00271

Citazioni: 2
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-04-14
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui