Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays

Anno: 2020

Autori: Lagarto JL., Villa F., Tisa S., Zappa F., Shcheslavskiy V., Pavone FS., Cicchi R.

Affiliazione autori: National Institute of Optics National Research Council (INO-CNR), Largo Enrico Fermi 6, 50125, Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy: Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133, Milan, Italy; Micro Photon Device SRL, Via Waltraud Gebert Deeg 3g, I-39100, Bolzano, Italy; Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277, Berlin, Germany; Department of Physics, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy; Privolzhskiy Medical Research University, 603005, Nizhny Novgorod, Russia.

Abstract: Autofluorescence spectroscopy has emerged in recent years as a powerful tool to report label-free contrast between normal and diseased tissues, both in vivo and ex vivo. We report the development of an instrument employing Single Photon Avalanche Diode (SPAD) arrays to realize real-time multispectral autofluorescence lifetime imaging at a macroscopic scale using handheld single-point fibre optic probes, under bright background conditions. At the detection end, the fluorescence signal is passed through a transmission grating and both spectral and temporal information are encoded in the SPAD array. This configuration allows interrogation in the spectral range of interest in real time. Spatial information is provided by an external camera together with a guiding beam that provides a visual reference that is tracked in real-time. Through fast image processing and data analysis, fluorescence lifetime maps are augmented on white light images to provide feedback of the measurements in realtime. We validate and demonstrate the practicality of this technique in the reference fluorophores and in articular cartilage samples mimicking the degradation that occurs in osteoarthritis. Our results demonstrate that SPADs together with fibre probes can offer means to report autofluorescence spectral and lifetime contrast in real-time and thus are suitable candidates for in situ tissue diagnostics.

Giornale/Rivista: SCIENTIFIC REPORTS

Volume: 10 (1)      Da Pagina: 8116-1  A: 8116-10

Maggiori informazioni: This work was supported by Tuscany Region (program POR FSE 2014-2020 Giovanisi www.giovanisi.it -program PAR FAS 2007-2013 -Bando FAS Salute 2014) and EU Horizon 2020 research and innovation program (grant H2020-ICT-2016-1 732111 PICCOLO and grant 654148 Laserlab-Europe). We would like to thank Caterina Credi, Giada Magni, Alberto Montalbano and Annunziatina Laurino for their help with the preparation of cartilage digestion experiments.
Parole chiavi: lifetime spectroscopy, multispectral imaging, SPAD array
DOI: 10.1038/s41598-020-65218-3

Citazioni: 24
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-03-24
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui